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Abstract

The stress concentrations near a single _ber break in a unidirectionally reinforced _ber composite are
investigated using a shear lag theory within the framework of _nite elements[ A model for uniformly spaced\
well bonded _bers embedded in a matrix that cannot carry axial loads that was formulated previously is _rst
introduced[ The solution of this problem involves Fourier transforms and requires only a two!dimensional
numerical integration[ The work described in the current paper characterizes the stress concentrations
around a single _ber break in the presence of _ber:matrix interface sliding\ axial matrix sti}ness and uneven
_ber spacing[ Due to the introduction of these complicating factors\ the model no longer lends itself to the
simple Fourier transformation solution method[ For the case of interface sliding a new method is developed
to handle sliding in any shear lag system[ For the cases of axial matrix sti}ness and uneven _ber spacing a
_nite element code speci_cally written for this problem is used to determine the _ber stresses[ The results
are discussed in the context of global versus local load sharing\ and the e}ects on composite failure[ Þ 0888
Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The failure of a unidirectionally reinforced _ber composite material is a complex event[ Initially
all _bers are intact and able to carry load[ As increasing load is applied to the composite\ the
weakest _ber will eventually fail[ The loads that are shed by the broken _ber near the failure site
must then be transferred to other _bers and possibly to the matrix[ Exactly where and how much
of the load is transferred depends on many parameters[ The strength and sliding resistance of the
_ber:matrix interface\ the _ber to matrix moduli ratio\ the matrix cracking or yield stress and the
regularity of the _ber spacing are just a few of these parameters[
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After the _rst break occurs\ the load is redistributed and this can cause other _bers to fail and
thus shed further load to intact _bers[ At some point the composite as a whole will be unable to
carry additional load and failure will ensue[ The failure of the composite can fall between the
extremes of Global Load Sharing "GLS# on the one hand and nearest neighbor Local Load Sharing
"LLS# on the other[ GLS is associated with a material where _ber breaks do not cause stress
concentrations in the other intact _bers and the stress along a broken _ber recovers to the applied
stress linearly from the break[ As will be discussed later\ this type of load transfer requires sliding
along the _ber:matrix interface and a relatively sti} matrix[ A GLS composite with a large number
of _bers will have a stress!strain behavior that is initially linear\ then as _bers progressively fail
the material will soften until a smooth maximum in the stress is reached "Curtin\ 0880^ Hui et al[\
0884#[

Composites that undergo brittle failure\ where the material behaves nearly linear elastically up
to fracture\ are usually associated with what has been termed Local Load Sharing "LLS#[ In a LLS
material intact _bers experience a stress concentration in the presence of a break[ Fibers closest to
the break will experience the highest stress concentration[ In the extreme case\ only nearest
neighbors experience the stress concentration and other _bers further from the break are una}ected[
This is associated with what has been termed a local load sharing rule[ This type of local load
sharing does not actually happen in most physical systems[ In general\ stress concentrations are
distributed throughout the system[ The magnitude of these stress concentrations and how they
depend on features of the composite system is the topic of this paper[

Due to the very complicated three!dimensional nature of composite materials\ _nite element
modeling is perhaps the best candidate for investigating the detailed stress distributions in the
_bers and matrix[ Unfortunately\ to investigate a composite of any signi_cant size and to account
for the e}ects of all of the parameters mentioned above would require extensive amounts of
computation time[ To alleviate this problem\ shear lag models have become a common feature in
composite microstress analysis[ Shear lag is a term used to describe a model that represents a three!
dimensional structure\ such as a _ber\ as a one!dimensional axial load carrying entity[ Other
assumptions common to shear lag models include that the matrix cannot carry any axial loads\
the _bers are well bonded to the matrix\ the _bers are arranged in a uniformly spaced array\ and
the _bers are only allowed to displace along their axis[ The model presented here is able to relax
all of these assumptions\ although we do use the assumption of allowing only axial displacements
for simplicity[

The shear lag concept was introduced by Cox "0841#[ His analysis only considered the stresses
along a single broken _ber in an elastic matrix and other neighboring _bers were not directly
included in the model[ Since then shear lag models have been used to investigate the stresses along
a broken _ber in the presence of di}erent matrix constitutive behaviors[ Du and McMeeking
"0884# formulated a model for a creeping matrix\ and Landis and McMeeking "0887# solved the
governing shear lag equation for a perfectly plastic matrix with deformation governed by J1 ~ow
theory[ Landis and McMeeking "0887# also give an overview of the various models along with a
model that includes both elastic load recovery and constant shear stress sliding at the _ber:matrix
interface[ Since these models do not directly include neighboring _bers the stress concentrations
in the unbroken _bers are not determined[ This de_ciency has been the primary shortcoming of
these models[

Hedgepeth "0850# and Hedgepeth and van Dyke "0856# formulated shear lag models that predict



C[M[ Landis\ R[M[ McMeekin` : International Journal of Solids and Structures 25 "0888# 3222Ð3250 3224

stresses in an in_nite array of _bers[ The three dimensional model of Hedgepeth and van Dyke
"0856# was improved upon by Landis et al[ "0887# such that the model directly includes next
nearest neighbor interactions and the sti}ness of the matrix springs that connect the _bers can be
explicitly related to matrix material properties[ The basic assumptions of these shear lag models
are that the _bers can be represented by one!dimensional axial springs and that the matrix transfers
load between _bers via shear stress but does not carry any axial load itself[ These models also
assume that the _bers are well bonded to the matrix and the _bers are arranged in an evenly spaced
array[ These shear lag models yield what is termed an in~uence function which requires a numerical
integration to evaluate the stress at any position on any _ber in the composite[

Today|s materials processing methods rarely produce a perfect array of _bers[ Slip along the
_ber:matrix interface is sometimes desired and designed into the material\ and the e}ect of matrix
sti}ness is most pronounced in systems with _ber to matrix moduli ratios near unity[ So how do
stress concentrations vary as these parameters are taken into account< We have formulated a new
method to model sliding in any shear lag system and use it to investigate the e}ect of sliding on
stress concentrations[ We will also use a _nite element model proposed by Cox et al[ "0883# that
represents _bers as one dimensional axial springs and the matrix as three dimensional _nite
elements to investigate how the stress concentrations vary near a single break for the cases of axial
matrix sti}ness and uneven _ber spacing[ Interface sliding\ axial matrix sti}ness\ and uneven _ber
spacing will each be considered separately[ We have assumed the absence of residual stresses\ but
these could be included by using simple superposition constructions[

1[ Well bonded _bers in a matrix without axial stiffness

This problem has been solved by Landis et al[ "0887#\ but we will summarize the results since
this problem is closely related to other cases and its solution is required for the sliding model[ The
formulation is identical to that of Hedgepeth and van Dyke "0856# except in the treatment of the
matrix[ We also note that this formulation is the continuous form of the _nite element model
proposed by Cox et al[ "0883#[ First consider the segment of _nite element mesh drawn in Fig[ 0[
The complete mesh extends out in_nitely in all directions repeating the cell shown[ The black dot
is a representative node in the mesh\ and all of the other nodes and elements that in~uence the
equilibrium of this central node are included in the drawing[ The equation governing the dis!
placement of this node is identical to the equation governing the displacement of any other node
in the system[ The dark lines represent _ber elements\ and the {bricks| are matrix elements[

Each node is allowed to displace only along the _ber direction\ x\ as shown in Fig[ 0[ The _ber
elements are one!dimensional springs between nodes with sti}ness EfAf:Dx where Ef is the Young|s
modulus of the _bers\ Af is the cross sectional area of the _bers\ and Dx is the distance between
nodes as shown in Fig[ 0[ The matrix element is assumed to have no axial sti}ness\ i[e[ Em � 9\ but
a _nite shear modulus Gm[ This assumption has been interpreted as being representative of a matrix
that has failed in tension due to cracking or yielding at a low stress[ Each matrix element is
essentially a system of springs connecting each node to all other nodes in the element[ The sti}ness
of each of these springs is determined by the _nite element method\ see Cook et al[ "0863#[ The
sti}nesses for the 2D brick elements shown in Fig[ 0 are given in Appendix A[ Note that the
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Fig[ 0[ The black circle is a representative node in the _nite element mesh[ The mesh drawn includes all of the nodes
and elements that a}ect the equilibrium of the central node[ The dark lines represent one dimensional _ber elements\
and the {bricks| with dimensions w×w×Dx are three!dimensional brick elements with matrix properties[

expressions for the sti}nesses contain Em\ but for this problem the matrix has no axial sti}ness\
i[e[ Em � 9[

Once all of the sti}ness terms are known for each element then the sti}ness matrix of the 16
node cell of Fig[ 0 can be assembled[ The equation governing the displacement of the central node
is then the general form of the equation governing any other nodal displacement in the system[ It
is now possible to make this system continuous in the x!direction by taking the limit as Dx goes to
zero[ In this limit the _nite element equations governing the displacements of the nodes are
transformed to ordinary di}erential equations governing the displacement distributions along the
_bers[ The equation governing the x displacement\ Um\n\ of a _ber located at position m\ n in the
square lattice is

d1Um\n

dx1
¦

3
2p

"Um¦0\n¦0¦Um¦0\n¦Um¦0\n−0¦Um\n¦0

¦Um\n−0¦Um−0\n¦0¦Um−0\n¦Um−0\n−0−7Um\n# � 9 "0#

where D is the _ber diameter and is related to the _ber cross sectional area by Af � pD1:3[ Note
that m and n can take on any integer values\ and thus eqn "0# represents an in_nite set of equations[
Following the procedure originated by Hedgepeth and van Dyke "0856# this set of equations can
be solved using a Fourier transformation and in~uence function technique[ Consider the problem
where a central _ber\ m � 9 and n � 9\ is broken at x � 9\ under far _eld applied strain\ o[ The
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solution is obtained by superposing the solution for an applied strain of −o at x � 9 on _ber
"m � 9\ n � 9#\ termed the {auxiliary problem|\ and the trivial uniform strain solution[ The bound!
ary conditions for the auxiliary problem are]

dU9\9

dx
"x � 9# � −o "1a#

Um\n"x � 9# � 9 for m\n � 9\9 "1b#

Um\n"x � �# � 9 for all m and n "1c#

Then the stress\ sm\n\ at any x!position\ in the _ber located at site m\ n in the lattice for the central
break problem\ is given by

sm\n"j#
Efo

� 0¦qm\n"j# "2#

where

j �X
3
2pX

Gm

Ef

x
D

"3#

and

qm\n"j# �

−g
p

9 g
p

9

cos nu cos mf"a exp ð−a=j=Ł#dudf

g
p

9 g
p

9

adudf

"4#

with

a � z7−1 cos u−1 cos f−3 cos u cos f "5#

Note that the absolute value in eqn "4# arises due to the fact that qm\n"−j# � qm\n"j#[ Also\ qm\n is
the solution for the normalized stresses in the _bers for the auxiliary problem[ The result for the
stress concentration factor in a nearest neighbor _ber is 0[970[ Landis et al[ "0887# have pointed
out that this value for the maximum stress concentration in a nearest neighbor _ber is in much
better agreement with more detailed _nite element calculations done by Nedele and Wisnom
"0883# "SCF ¼ 0[95Ð0[96# than the earlier shear lag model of Hedgepeth and van Dyke "0856#
"SCF � 0[03#[ Note that the magnitudes of the stresses do not depend on the moduli ratio\ but in
contrast the length scale over which stresses are perturbed do depend on this ratio[ For example\
a composite with a very compliant matrix will have elevated stresses in a _ber next to a break over
much longer distances than a composite with a very sti} matrix[ This becomes a very important
feature when the statistics of _ber failure are considered[ A _ber that has a high stress acting over
a given length will have a higher probability of failure than a similar _ber with the same stress
magnitude acting over a shorter length[ Equations "2#Ð"5# are the solution for a {perfect| composite
in which the _ber:matrix interface is well bonded\ the matrix has zero axial sti}ness and the _bers
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are arranged in a perfectly square lattice[ The power of this technique is that it gives the stress at
any _ber position in the composite "i[e[ for any m\ n and j#[ Furthermore\ the in~uence function
given in eqns "4# and "5# can be used along with superposition techniques to compute the stresses
in the composite when there are multiple\ arbitrarily located breaks as has been done with a two!
dimensional in~uence function by Sastry and Phoenix "0882# and Beyerlein and Phoenix "0886#[

2[ Sliding at the _ber:matrix interface

In this section we will determine the stress concentration in a _ber adjacent to a broken one in
the presence of sliding at the _ber:matrix interface[ First we will present the closed form solution
of sliding in single _ber shear lag models to illustrate the problem[ The _rst single _ber shear lag
model was presented by Cox "0841# and Nairn "0886# has recently improved upon the original
model[ Landis and McMeeking "0887# have presented the following model for interface sliding[ A
literature search has been carried out to determine whether this model has been developed else!
where\ but no such work was found[

All single _ber shear lag models that assume the matrix behaves elastically have a solution for
a break at x � 9 of the following general form]

s

Efo
�

du
dj

� 0− exp ð−=j=Ł "6#

t¼ � −
d1u

dj1
− sgn"j# exp ð−=j=Ł "7#

where

j � C0X
Gm

Ef

x
D

\ u � C0X
Gm

Ef

0
o

U
D

\ t¼ � C1X
Ef

Gm

t

Efo
"8aÐc#

where x is the axial coordinate along the _ber\ U is the axial displacement\ s is the axial stress\ t

is the shear stress acting at the _ber surface and the function sgn "j# is equal to 0 if j − 9¦ or −0
if j ¾ 9−[ The constants C0 and C1 are chosen to be consistent with eqns "6# and "7# and can
depend on the geometry of the system and the elastic properties of the _ber and matrix[ Note that
the constants C0 and C1 will be di}erent for the Cox "0841# and Nairn "0886# models\ but that the
general form of eqns "6#Ð"8# remains unchanged[

In order to introduce sliding\ we must assume some constitutive behavior for the _ber:matrix
interface[ In metal matrices with strong _ber:matrix interfaces\ sliding is governed by shear yielding
of the matrix[ In many ceramic and titanium matrix composites there is no strong chemical bond
between the _ber and matrix and stresses at the _ber matrix interface are governed by frictional
sliding in ceramic matrices or yielding of a _ber coating in titanium matrices[ Polymer matrix
composites tend to have a strong _ber:matrix bond and therefore the sliding process in polymer
matrix composites is a more complicated fracture phenomenon[ The actual debonding of the
interface is governed by energy release rates and subsequent sliding of a _ber segment is governed
by friction[ In order to capture most of these features we will use a simple interface constitutive



C[M[ Landis\ R[M[ McMeekin` : International Journal of Solids and Structures 25 "0888# 3222Ð3250 3228

model described by Beyerlein and Phoenix "0885# in which a region of the interface along the _ber
will _rst debond when the magnitude of the shear stress at that position is equal to a critical
debonding stress tD[ Once the _ber has debonded it will slide along the matrix with a constant
sliding stress t9[ The solution for sliding in a single _ber takes the form

s

Efo
� t¼9 =j=\ t¼ � − sgn"j#t¼9 "09aÐb#

in the sliding zone\ −L
s ¾ j ¾ L
\ where L
s is

L
s � C0X
Gm

Ef

Ls

D
"00#

and Ls is the length from the break to the end of the sliding zone[ Outside of the sliding zone where
=j= × L
s\ the stresses take the form

s

Efo
� 0−C exp ð−=j=Ł\ t¼ � − sgn"j#C exp ð−=j=Ł "01aÐb#

The constant C and the sliding zone length L
s are determined by applying the following boundary
conditions[ At the end of the sliding zone\ j � L
s\ the axial stress must be continuous and the
normalized shear stress must be equal to −t¼9 for the values of j in_nitesimally less than L
s and
−t¼D for values of j in_nitesimally greater than L
s[ The complete solution to this problem is then

s

Efo
� 6

t¼9 =j=
0−t¼D exp ðL
s−=j=Ł

for =j= ¾ L
s

for =j= × L
s

\

t¼ � 6
− sgn"j#t¼9

− sgn"j#t¼D exp ðL
s−=j=Ł
for =j= ³ L
s

for =j= × L
s

\ L
s �
0
t¼9

−
t¼D

t¼9

"02aÐc#

Note that s"−j# � s"j# and t"−j# � −t"j#[ As demonstrated here\ the solution to the sliding
problem requires matching the sliding and elastic solutions at L
s[

Considering the solution to the single _ber shear lag model with sliding\ it is useful to investigate
the form of the elastic solutions for multi!_ber shear lag models[ The general form of the governing
equations for a multi!_ber shear lag model is

d1ui

dj1

¦ s
N

j�0

Aij

duj

dj
¦ s

N

j�0

Bijuj � 9 for i � 0 to N "03#

where ui are normalized axial or transverse displacements of a _ber or region of matrix and N is
the number of _ber and matrix regions multiplied by the number of displacements allowed per
region "i[e[ 2 if axial and transverse displacements are allowed#[ We choose the normalizations
represented by u\ j and t¼ such that

si

Ef\mo
�

dui

dj
and t¼i � −

d1ui

dj1
\

where Ef\m denotes the _ber or matrix Young|s modulus depending on whether i represents a _ber
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or matrix region[ Note here that the numbering system has changed from that used in eqns "0#
and "4#[ In this numbering scheme each _ber or matrix region is speci_ed by a single number
instead of an ordered pair as in eqns "0# and "4#[ This is more useful when a _nite number of
regions are considered\ but the ordered pair scheme must be used for in_nite composites[ In our
models the Aij and Bij are determined by the _nite element method in the same manner described
in the previous section for the {perfect| composite[ Equation "03# can represent a shear lag system
with axial matrix sti}ness\ random _ber spacing and transverse displacements[ The solution to eqn
"03# can be obtained in a variety of ways[ If N : � and the material has a periodic geometry then
the Fourier series transformation of the previous section must be used[ For _nite N\ numerical
methods "as in the next sections# or the characterization of the appropriate eigensystem can be
used as the solution procedure[ In general\ with a far _eld strain of o applied to the system\ the
axial stress along _ber or matrix region i with a single break at j � 9 in _ber or matrix region j is

si"j#
Ef\mo

� 0¦qij"j# "04#

where j is again a normalized coordinate along the _ber and qij"j# is the in~uence function which
gives the strain at j on line of freedom i due to the presence of a normalized unit opening load at
j � 9 on line of freedom j[ Again\ Ef\m is equal to the _ber or matrix Young|s modulus if i is a _ber
or matrix line of freedom respectively[ The in~uence function\ qij\ can take the form of an integral
as in eqn "4#\ a series of exponential functions if the eigensystem solution method is used\ or a list
of tabulated values if a numerical solution procedure is implemented[

Now that we know the form of the elastic solutions for our shear lag systems the problem
becomes one of matching the sliding solution to the elastic solution[ To do this we will _rst discuss
the Break In~uence Superposition "BIS# technique developed by Sastry and Phoenix "0882#[
Consider an elastic shear lag system consisting of a matrix and _bers with M arbitrarily loaded
breaks as shown in Fig[ 1[ De_ne Lij to be the strain at break i due to a unit opening load at break
j[ Note that the Lij can contain interactions between both _ber and matrix failure sites[ Therefore\
this de_nition of Lij is slightly di}erent from that used in Sastry and Phoenix "0882# which only
considered interactions of _ber breaks[ Let wj be a weight given to break j[ Note that wj is
proportional to the opening displacement of break j[ Then the traction on break i\ pi\ is given by

pi

Ef\mo
� s

M

j�0

Lijwj "05#

If we desire the solution for a uniform traction on all breaks with zero far _eld applied strain then
we set all of the pi � −Ef\mo and solve the set of equations given by eqn "05# for the weights\ wj[
Once this solution is obtained then the uniform strain _eld o is superposed to obtain the solution
for traction free breaks with a uniform strain applied at in_nity[ The stress at any point in the
composite is then

si"j#
Ef\mo

� 0¦ s
M

j�0

qij"j−jj#wj "06#

where si"j# is the stress at j along line of freedom i\ qij is the in~uence function for line of freedom
i due to a unit opening load on line of freedom j and jj is the axial location of break j[
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Fig[ 1[ A schematic of the superposition procedure used in the Break In~uence Superposition technique[

Given that we can control the stress at any position in a _ber or matrix line of freedom using
BIS\ it is possible to model sliding using this method[ Recall eqn "09a# which states that the
normalized axial stress in a broken _ber in the sliding region increases linearly from the break[
Therefore\ we can model the sliding region as a continuous distribution of breaks with non!zero
traction[ The traction in this region before we superpose the uniform far _eld strain has the form
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pi"j#
Ef\mo

� −0¦t¼9 =j−ji = "07#

where ji is the position of the ith break[ Then the set of equations given by eqn "05# becomes a set
of integral equations governing the weight functions of the slip zones around the breaks\

s
M

j�0 6g
j j¦L
sR\ j

j j

qij"j−j?#wRj"j?# dj?¦g
j j

j j−L
sL\ j

−L
sL\j qij"j−j?#wLj"j?# dj?7� −0¦t¼9 =j−ji =

"08#

where L
sR\j and L
sL\j are the normalized lengths of the sliding regions to the right and left of break
j assuming the j direction increases to the right\ and wRj and wLj are the weight functions for the
right and left sliding regions for break j[ Equation "08# "i � 0 to M# represents a set of Fredholm
integral equations of the _rst kind governing the weight functions wR\Lj"j#[ The di.culty with this
set of equations is that the lengths of the sliding zones are not known a priori[ The _nal solution
must be found by iteration given the boundary conditions that the magnitude of the shear stress
just outside of a sliding region must be equal to the debond shear strength\ t¼D[

At this point the formulation is still a bit abstract so we will give two examples[ First we will
show the governing equation for the single _ber shear lag model with a single break\ then we will
solve the equations for a single _ber break on _ber m � 9\ n � 9 in an in_nite composite with no
axial matrix sti}ness and _bers arranged in a square array[ For simplicity we will assume that the
debond shear strength is equal to the shear sliding strength[ Since we are dealing with a single
break the slip zones must be symmetric\ i[e[ L
sR � L
sL � L
s[ Equation "08# now reduces to one
equation governing a single weight function[ For the single _ber shear lag model the in~uence
function appears in eqn "6#\ q"j# � − exp"−=j=#[ Therefore\ the equation governing the weight
function in the sliding region is

g
L
s

9

ð− exp"−=j−j?=#−exp"−=j¦j?=#Łw"j?# dj � −0¦t¼9j "19#

The shear stress at the end of the sliding zone at j � L
s is

t¼"L
s# � g
L
s

9

ð−exp"−=L
s−j?=#−exp"−=L
s−j?=#Łw"j?# dj? � −t¼D "10#

No signi_cance should be placed on the fact that the kernel function in eqn "10# is identical to the
kernel function in eqn "19#[ The kernel for eqn "10# comes from eqn "7# for the shear stress on the
_ber near the break[ An exact solution exists for the weight function w"j# in eqns "19# and "10#[ It
is]

w"j# � t¼9d"j#¦"t¼D−t¼9#d"j−L
s#¦
0
1
"0−t¼9j# with L
s �

0
t¼9

−
t¼D

t¼9

"11#

where d"j# is the Dirac delta function such that g
b

a

f "j#d"j−c# dj is equal to f "c# if a ³ c ³ b\ f "c#:1

if c � a or c � b and 9 otherwise[ The solution for the weight function yields the same results for
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_ber stresses as eqn "02#[ The solution to eqns "19# and "10# was also done numerically with a
Gaussian quadrature method as described by Press et al[ "0881#\ and a bisection method was used
to _nd the appropriate L
s[ We will mention here only that the numerical results agree perfectly
" from a numerical standpoint# with the exact solution given in eqn "02# and that the singular delta
functions do not cause any numerical di.culties[

We now turn our focus to the in_nite system and the e}ect of sliding on stress concentrations
in neighboring _bers[ The governing equation for the weight function in the sliding zone is

g
L
s

9

ðq9\9"j−j?#¦q9\9"j¦j?#Łw"j?# dj? � −0¦t¼9j "12#

where q9\9 is the in~uence function de_ned in eqns "4# and "5#[ For our study we assume that the
debond shear strength is equal to the shear sliding stress[ The de_nition of j is given in eqn "3#[
The normalization for the shear stress is

t¼ � −
d1u

dj1
� 3X

2p

3 X
Ef

Gm

t

Efo
"13#

This normalization is also valid for the shear sliding strength[ The stress on a _ber located at
position m\ n is

sm\n"j#
Efo

� 0¦g
L
s

9

ðqm\n"j−j?#¦qm\n"j¦j?#Łw"j?# dj? "14#

where qm\n is given in eqns "4# and "5#[ The shear stress at the end of the sliding zone is

t¼9\9"L
s# � g
L
s

9

ðt9\9"L
s−j?#¦t9\9"L
s¦j?#Łw"j?# dj? � −t¼9 "15#

where

tm\n"j# �

− sgn"j#g
p

9 g
p

9
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9 g
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where a is given in eqn "4#[ Note that the sgn function and the absolute value arise due to the fact
that the tm\n"j# are antisymmetric about j � 9 such that tm\n"−j# � −tm\n"j#[ The solution to eqn
"12# is obtained by a Gaussian quadrature method described by Press et al[ "0881#\ and L
s is found
using a bisection method[

Figures 2 and 3 show results for the axial stress in the broken _ber and the axial stress in the
nearest neighbor _ber respectively[ Beyerlein and Phoenix "0885# have formulated a model to
handle sliding speci_cally for the two!dimensional "i[e[ a single sheet of _bers and matrix# shear
lag model of Hedgepeth "0850# and found similar trends to those found in Figs 2 and 3[ There are
multiple curves on each graph corresponding to di}erent values of the parameter 0−t¼9:t¼max where
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Fig[ 2[ The axial stress in a broken _ber as a function of j "the normalized distance from the break#\ for four values of
the normalized shear sliding strength[

t¼max � −t9\9"j � 9# which in this case is 1[89 and represents the maximum normalized shear stress
at the break[ This parameter is also closely related to the ratio L
s:L
KT where L
KT is the slip length
in the Kelly and Tyson "0854# shear lag model that assumes that all of the stress recovery in the
broken _ber is governed by sliding[ The normalized lengths L
s and L
KT are

L
s ¼
0
t¼9

−
0

t¼max

\ L
KT �

0
t¼9

"17aÐb#

The right hand side of eqn "17a# is an upper bound on L
s and has a maximum error of about 1[6)
where 0−t¼9:t¼max � 9[2[ Therefore L
s:L
KT ¼ 0−t¼9:t¼max high normalized shear sliding strength
implies that the sliding length is much smaller than what is predicted by the simple Kelly and
Tyson model\ and low shear sliding stress creates sliding lengths that are comparable to the length
predicted by the Kelly and Tyson model[

Figure 2 illustrates that as t¼9 approaches zero the axial stress distribution in the broken _bers
approaches the bilinear pro_le predicted by the Kelly and Tyson model[ Figure 3 shows that when
t¼9 − t¼max the stress concentration factor in the nearest neighbor _ber reaches its maximum value
of 0[970[ In this regime the system is no di}erent from a well bonded system[ As t¼9 decreases\ the
stress concentration factor in the nearest neighbor _ber also decreases until the point were t¼9 : 9
and the stress concentration goes to one "no increase in stress due to the break#[
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Fig[ 3[ The axial stress in a nearest neighbor _ber as a function of j "the normalized distance from the break#\ for four
values of the normalized shear sliding strength[

Figure 4 is a plot of the maximum stress concentration in the nearest neighbor _ber as a function
of 0−t¼9:t¼max[ Figure 5 is a plot of the inverse of the normalized distance from the break where the
axial stress in the nearest neighbor _ber _rst falls to the far _eld applied stress "also called the
positively a}ected length#\ 0:L
0\ vs 0−t¼9:t¼max[ In general high stress concentrations are detrimental
to composite strength\ but when considering the statistical nature of _ber strength a more accurate
statement would be that high stresses acting over long lengths of _ber are detrimental to composite
strength[ Notice in Figs 3Ð5 that as the stress concentration decreases the length of _ber that
experiences an elevated stress increases[

It is of interest to consider whether the higher stress concentration acting over the shorter length
when t¼9 is large is e}ectively worse for failing the material than the lower stress concentration
acting over the longer length when t¼9 is small[ We have developed one simple model to address
this issue[ Assume that we have applied load to a composite with no _ber breaks[ In this situation
all of the _bers have the same uniform stress and the same probability of failure[ Now assume that
a single _ber breaks and sliding is allowed at the interface[ The axial stress in the broken _ber
looks like a stress pro_le in Fig[ 2 and the stress in a nearest neighbor _ber looks like the
corresponding pro_le in Fig[ 3[ We can now calculate the probability that a nearest neighbor _ber
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Fig[ 4[ The maximum stress concentration factor in a nearest neighbor _ber as a function of the normalized shear sliding
strength[

will survive given that it was able to survive the initial stress required to break the failed _ber[
Calculations of this type are fundamental to determining the probability of failure of a material
experiencing non!uniform stresses\ and have been done previously by many authors including
Phoenix and Sexsmith "0861#\ Thouless and Evans "0877# and Schwietert and Steif "0889#[ The
probability of survival for a _ber experiencing a varying axial stress distribution\ s"x#\ given that
it survived an initial uniform stress of s � Efo\ is

Ps �

exp $−
1
L9 g

L0

9 0
s"x#
S9 1

m

dx%
exp $−

1L0

L9 0
Efo

S9 1
m

%
"18#

where x � 9 is the plane of the break[ We have assumed that the failure statistics of the _bers is
governed by a Weibull distribution[ The parameters L9 and S9 are the Weibull strength and length
parameters\ m is the Weibull modulus and −L0 and L0 are the limits within which the _ber is able
to fail[ The relevant limit L0 lies where the axial stress in the nearest neighbor _ber _rst falls to the
initial applied stress as shown in Fig[ 5[ The probability of failure in the region of the _ber where
the stress has decreased is zero[ In general\ eqn "18# can be represented in a simpler form as
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Fig[ 5[ The inverse of the length over which the axial stress in a nearest neighbor _ber is elevated above the far _eld
applied stress as a function of the normalized shear sliding strength[

Ps � exp $−1k0
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Here S� is a characteristic strength for the composite\ snn"j# is the stress in the _ber that is a
nearest neighbor to the break and k is a dimensionless parameter governing the probability of
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Fig[ 6[ A measure of the probability of failure\ k\ for a _ber neighboring the break as a function of the normalized shear
sliding strength\ for four values of the Weibull modulus[

failure of the _ber[ Large values of k imply that the nearest neighbor _ber is likely to fail\ while a
k value of zero implies that the _ber will not fail and further load is needed to cause another break[
The limit of k � 9 implies global load sharing[ Since no closed form expression exists for the stress
pro_le in a _ber neighboring a break in the slipping system\ the value of k was determined by
numerical integration of the results for the axial stress in the nearest neighbor _ber[ Figure 6 is a
plot of the value of k as a function of 0−t¼9:t¼max[ The plot shows that k is not monotonically
decreasing with decreasing t¼9 and therefore lower stress concentrations do not necessarily imply
lower probabilities of failure for the neighboring _bers[ It can be seen that k � 9 "GLS# occurs
only for t¼9 � 9[

A stress concentration factor of 0\ i[e[ no stress concentration in the neighboring _ber\ occurs
when the sliding length is equal to the sliding length predicted by Kelly and Tyson "0854#[ This
implies that the axial stress pro_le in the broken _ber is bilinear[ This situation\ where there are
no stress concentrations and the broken _ber has a bilinear stress recovery pro_le\ are exactly the
assumptions used in in_nite _ber global load sharing models "Curtin\ 0880^ Hui et al[\ 0884#[ As
noted above\ this occurs when t¼9 � 9[ The parameter t¼9 � 9 when the matrix is rigid in shear\ t9 is
zero\ or the far _eld applied strain is in_nite[ Therefore\ GLS occurs in composites when there is
sliding at the _ber:matrix interface and the matrix has in_nite shear modulus[ The conditions
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where GLS!like behavior should occur are when the matrix is relatively sti}\ the interfacial sliding
stress is low\ and the _bers are relatively strong such that breaks occur only at high strains[ The
strength of GLS materials has been studied extensively by many authors[ The most notable works
are the approximate strength model formulated by Curtin "0880#\ the exact treatment of the single
_lament composite by Hui et al[ "0884# and the investigation of size e}ects by Phoenix et al[ "0886#[

3[ Numerical solution to shear lag models

To this point we have discussed only exact solution procedures for the governing shear lag
equations[ With the method that we have proposed to formulate the governing shear lag equations\
it is very easy\ and in some cases less tedious\ to solve these equations using a numerical _nite
element method[ In doing this we return to the model of Cox et al[ "0883#[

Equation "0# represents the set of di}erential equations that governs the displacements in the
_bers of the shear lag model[ These equations were derived using the _nite element method[ In
other words\ the system was discretized into a set of nodes with _ber and matrix elements connecting
the nodes\ a displacement _eld consistent with the nodal displacements was assumed in each
element and then the principle of virtual work was utilized to determine the spring sti}nesses that
represent the _bers and matrix[ To obtain the _nal governing equations\ the discretization length
in the x!direction was taken to approach zero[ The resulting in_nite system of linear\ ordinary
di}erential equations lends itself to a solution by a Fourier transformation technique[

Utilization of the Fourier transformation method requires that the model system be relatively
simple[ Axial matrix sti}ness\ and uneven _ber spacing are complications that prohibit the use of
the Fourier transformation technique[ It is possible to solve for the eigenvalues and eigenvectors
of the system but this procedure can be tedious[ Instead\ we will use the entirely numerical _nite
element matrix method as the solution procedure to investigate the e}ects on stress concentrations[
The numerical calculations model the same system as described by eqn "03#\ but now the dis!
cretization length\ Dx\ is not in_nitesimal[ The _bers are still one!dimensional springs and the
matrix is represented by brick elements with degrees of freedom in the x!direction[ For all of the
numerical _nite element results presented in the next sections\ the array is 02×02 _bers in the z!
and y!directions\ and the number of elements along the length of a _ber is 79[ The total length of
the _bers is chosen such that the stress in the broken _ber has recovered to at least 88) of the far
_eld applied stress[ Each calculation takes between 0 and 4 min on a Silicon Graphics Indigo
workstation[

For the purposes of comparing the numerical _nite element calculation to the results for the
in_nite array given by the in~uence function in eqns "2#Ð"5#\ the _rst results to be discussed will
be for the well bonded case[ Figure 7 is a two!dimensional representation of the three!dimensional
model[ For the case of a single break\ three mutually perpendicular symmetry planes exist with a
common point at the break[ This allows us to consider one eighth of the entire three!dimensional
system[ Fibers lying on a symmetry plane are given half of the sti}ness of a full _ber and the
broken _ber is given one quarter of the sti}ness of an entire _ber[ Figure 7 illustrates that all of
the nodes on the plane of the break are given zero displacement except for the broken _ber which
is required to have zero nodal force[ All of the nodes on the boundary opposite to the plane of the
break are given a uniform displacement that is related to a uniform applied strain[ Figures 8 and
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Fig[ 7[ A 1D representation of the model when the _nite element matrix method is used as the solution procedure[
Boundary conditions are only needed on the top and bottom surfaces because the nodes are only allowed to displace in
the x!direction[ If the matrix has axial sti}ness then a second step is required to enforce the condition of zero axial stress
at the break[

09 are plots of the axial stress in the broken and in a nearest neighbor _ber as a function of the
distance from the break plane in non!dimensional units j[ The circles are the numerical _nite
element results and the crosses are the results from eqns "2#Ð"5#[ These plots demonstrate that it
is adequate to use a _nite 02×02 array of _bers\ and a _nite model length with 79 elements along
a _ber\ to represent the stresses present near a single _ber break in a large composite[ The results
for the stresses in the broken _ber and the nearest neighbor _bers are _tted very well to the
following functions]

sB"x#
Efo

� 0− exp 0−0[75X
Gm

Ef

x
D1 "21#

and
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Fig[ 8[ The axial stress in a broken _ber as a function of the non!dimensional length j[ The _bers are well bonded to
the matrix\ the matrix has no axial sti}ness\ and the _bers are arranged in a perfect square array[ x is the in~uence
function solution for the in_nite array of _bers\ the circles are the _nite element results\ and the solid line is the _t of
eqn "21#[

sNN"x#
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� 0− exp 0−0[36X
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D1¦0[970 exp 0−0[46X
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Ef
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D1 "22#

where sB is the axial stress in the broken _ber and sNN is the axial stress in the nearest neighbor
_ber[ These functions are shown as solid lines in Figs 8 and 09[ The functional form for the stress
in the broken _ber follows from the original shear lag model formulated by Cox "0841#[ The value
of 0[75 in the exponential is used to _t the numerical results and is not present in the original Cox
paper[ We emphasize that these functions are not exact solutions from the in~uence function but
rather closed form _ts to the exact solution[

The _nite element model presented here is essentially identical to the model presented in eqns
"0#Ð"5#[ It solves the same governing equations developed by Landis et al[ "0887#[ Equations "2#Ð
"5# are the exact solution to the set of equations given by eqn "0#[ The _nal result requires a
numerical integration which can give the desired result to almost any precision necessary[ On the
other hand\ the _nite element results are a completely numerical solution to the equations[ The
system is broken up into discrete nodal degrees of freedom\ a set of linear matrix equations is
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Fig[ 09[ The axial stress in a nearest neighbor _ber as a function of the non!dimensional length j[ The _bers are well
bonded to the matrix\ the matrix has no axial sti}ness\ and the _bers are arranged in a perfect square array[ x is the
in~uence function solution for the in_nite array of _bers\ the circles are the _nite element results\ and the solid line is
the _t of eqn "22#[

obtained\ the matrix is inverted and the _nal solution is calculated[ It is no longer possible to deal
with an in_nite array of _bers and the _nal results are subject to the same discretization errors
that all numerical models su}er from[ The models to be presented in the next sections use the
numerical _nite element method as the solution procedure[ All of these models are shear lag
models[

4[ Well bonded _bers in a matrix with axial stiffness

To this point we have only considered matrices that cannot carry any axial loads[ This assump!
tion is most valid for matrices that are cracked or possibly yielded due to tensile stresses that
existed in the composite prior to any _ber breaks[ For matrices with high strains to failure and
relatively high sti}ness\ the assumption that Em � 9 is no longer valid[ Recent experimental work\
Wagner et al[ "0885#\ has demonstrated the fact that stress concentrations in composites with
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Fig[ 00[ The maximum stress concentration in a nearest neighbor _ber as a function of the axial matrix sti}ness[ The
stress concentration factor in a nearest neighbor _ber decreases as the axial sti}ness of the matrix increases[ The extra
matrix nodes allow the crack to be isolated to the _ber[

tough matrices do depend on the axial sti}ness of the matrix[ All of the shear lag models that do
not consider the axial sti}ness of the matrix material are not able to predict this behavior[

To model axial matrix sti}ness and to maintain the spirit of simplicity of shear lag modeling\
extra degrees of freedom must be placed among the _bers and this arrangement is shown in Fig[
00[ Since the axial sti}ness of the matrix depends on both the Young|s modulus of the matrix\ Em\
and the area\ w1\ of the matrix between the _bers\ the dimensionless parameter Emw1:EfD

1 is used
to characterize the amount of matrix sti}ness in the system[ No sliding is allowed to occur at the
interface\ so the calculation is linear elastic[ Due to the introduction of extra nodes in the matrix
the solution of the problem does not lend itself to the Fourier transformation solution method[
Therefore\ we use a numerical _nite element procedure to obtain the results[ The model is a
uniformly spaced\ 02×02 array of _bers with extra matrix nodes in the pattern shown in Fig[ 00[
There are 79 elements of length Dx along every _ber[ As in the previous models\ the sti}ness of
the {springs| that represent the matrix are determined by the _nite element method[ The sti}ness
terms for an element are given in Appendix A[ There are degrees of freedom lying entirely within
the matrix which are used to introduce the e}ect of having intact matrix material surrounding the
broken _ber[ The procedure for solving the problem of a uniformly strained composite with a
single stress free _ber break requires two steps[ The _rst step has been described in the previous
section and is illustrated in Fig[ 7[ After this step is completed and if the matrix has axial sti}ness\
as it does in this case\ then the stress at the tip of the broken _ber will be compressive[ In order to
enforce the condition of zero stress at the break\ we must now superpose on this solution the
solution for a uniform strain[ The uniform strain is tensile and its magnitude is such that it will
negate the compressive stress at the _ber break from the initial solution[ The stress at any position
in the model is the stress from the _rst solution plus the stress from the uniform strain solution[
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Fig[ 01[ The stress concentration factor in a nearest neighbor _ber with all of the immediate neighbors having close
spacing as a function of the relative perturbation size[

Figure 00 is a plot of the maximum stress concentration in a nearest neighbor _ber for a given
value of the matrix sti}ness[ When the matrix has zero sti}ness the stress concentration in the
nearest neighbor is 0[970 as expected[ As the relative sti}ness of the matrix Emw1:EfD

1 increases\
the maximum stress in the nearest neighbor _ber decreases as shown in Fig[ 00[ Shear lag models
that neglect axial matrix sti}ness cannot predict the e}ects of increasing the matrix Young|s
modulus or _ber spacing on stress concentrations[ We have presented a mechanically consistent
method for determining these e}ects[

5[ Uneven _ber spacing

As mentioned earlier\ it is di.cult to process composites so that the _bers form a perfectly
uniform array[ Also\ experimental measurements\ Wagner et al[ "0885#\ are most often done on
composites with non!uniform _ber spacing[ Almost all attempts at modeling composites\ including
the models discussed previously in this paper\ assume that the _bers are arranged in a periodic
array\ be it square\ hexagonal or something else[ In this section we will address what happens to
stress concentrations around breaks when there is some type of eccentricity in the placement of
_bers near a break[ Examples of the meshes that were used are shown in Figs 01 and 02[ We
assume that the _bers are perfectly straight and parallel coming out of the plane of the schematics[
Also\ the _bers are well bonded to the matrix which has zero axial sti}ness[ Again this type of
_ber con_guration does not lend itself to the Fourier transformation solution method[ The numeri!
cal _nite element method is used[ All of the elements that are square have sti}nesses as given in
Appendix A\ while elements near the displaced _ber"s# that are not square in their plan have
sti}nesses that are determined by the isoparametric _nite element formulation\ Irons "0855#[ Once
the sti}ness matrix is assembled the calculation is linear elastic[ The boundary conditions are



C[M[ Landis\ R[M[ McMeekin` : International Journal of Solids and Structures 25 "0888# 3222Ð3250 3244

Fig[ 02[ The stress concentration factor in the nearest neighbor _ber with the broken _ber perturbed from its central
position as a function of the relative perturbation size[

applied as shown in Fig[ 7 and as discussed in previous sections[ Notice that the mesh in Fig[ 02
has only one of the two transverse planes of symmetry and therefore one quarter of the entire
model enters into the solution instead of only one eighth[

Two types of _ber spacing eccentricity are considered[ The _rst type of eccentricity is where all
of the eight _bers surrounding the break are moved toward the broken _ber such that the new
spacing between these _bers is reduced by the distance e\ as shown in Fig[ 01[ The second type of
eccentricity moves only the broken _ber by a distance e toward one of the nearest neighbor _bers\
as shown in Fig[ 02[ All of the other _bers in the 02×02 array are in their proper positions and
the only perturbation in the spacing is near the _ber break[

First let us consider the case where all immediately neighboring _bers are moved closer to the
broken _ber[ Figure 01 is a plot of the maximum stress in a nearest neighbor _ber as a function of
the eccentricity ratio e:w\ where w is the unperturbed _ber spacing[ As shown in the graph\ a
maximum value of 0[983 for the stress concentration factor in a nearest neighbor _ber is obtained[
Since there are eight neighboring _bers\ an upper bound on the stress concentration factor must
be 0[014 "if other _bers on this plane do not have a SCF less than 0#[ In this situation all of the
neighboring _bers would share the load shed by the broken _bers equally and no other _bers in
the array would be a}ected by the break[ We have seen from other models that all _bers at a _nite
distance from the break can {feel| the presence of the break[ Any stress perturbation in a _ber
neighboring a break must certainly perturb the stress state in a _ber neighboring it further from
the break[ Therefore\ it should be impossible to reach a value for the stress concentration of 0[014[
This fact is illustrated in Fig[ 01[

Next consider the case were the broken _ber is moved toward one of the neighboring _bers by
a distance e[ Figure 02 is a graph of the nearest neighbor stress concentration as a function of e:w[
A maximum stress concentration of 0[30 is approached as the eccentricity ratio approaches 0[
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Following the same reasoning as in the previous paragraph\ the upper bound on the stress
concentration factor in the nearest neighbor must be 1[ However\ due to the long range load
sharing that is present in this model\ this bound is not reached[

These perturbations in the _ber arrangement can be interpreted as local increases in volume
fraction[ The results show that the two perturbations considered here give dramatically di}erent
results[ A more uniform change in the local spacing gives rise to only a slight increase in the stress
concentration on a neighboring _ber\ while a very localized relocation of one _ber yields a
signi_cant increase in the stress concentration[

6[ Discussion

We have attempted to characterize the stress concentrations that occur in _brous composite
materials[ The _nite element method was used to generalize an idealized shear lag model of Landis
et al[ "0887#[ The {perfect| composite model assumes that the _bers are well bonded to the matrix\
the matrix has zero axial sti}ness and the _bers are arranged in a perfect square array[ A new
formulation to represent sliding in any shear lag system was presented and used to investigate the
e}ects of sliding on _ber stress concentrations[ A _nite element model was used to relax the zero
matrix axial sti}ness and uniform _ber spacing assumptions and to investigate the e}ects on the
stress concentrations near a single broken _ber[ For the case of the {perfect| composite the
numerical _nite element model was shown to be in excellent agreement with the exact solution of
the in~uence function model[

The most important result from the {perfect| composite model is not the magnitude of the stress
concentration\ but rather the characteristic length over which the stresses are elevated above the
far _eld applied stress[ The solution of the model leads to the normalization of lengths\

j �X
3
2pX

Gm

Ef

x
D

[

The term zGm:Ef in the normalization allows us to easily relate one _ber:matrix system to another
and indicates that the main e}ect of changing the moduli ratio is to rescale the lengths over which
stress elevation takes place in _bers adjacent to broken ones[ This normalization carries over into
the other models that relax the {perfect| assumptions[ The reason it is important to consider the
lengths over which stress concentrations act and not just the stress concentration magnitude is that
_bers do not have a deterministic strength[ Instead\ ~aws are distributed statistically along the
length of the _ber[ Each of these ~aws has a strength associated with it[ Therefore\ in order to fail
a _ber the stress at a speci_c ~aw site must be higher than that ~aw|s strength[ If the stress is
elevated along a _ber over a long distance\ then more ~aws will experience the high stress\ and the
probability that a weak ~aw will be sampled is greater[

A second interesting behavior of the {perfect| composite system is that the magnitude of the
stress concentration does not depend on the _ber to matrix moduli ratio[ This arises due to the
assumptions that the matrix has no axial sti}ness and only axial "x# displacements are allowed[
Another consequence of the zero axial matrix sti}ness shear lag model is that the _ber spacing
does not a}ect the magnitude or the length over which the stress concentrations act[ This can be
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explained by examining the assumed geometry of the matrix[ Between any four neighboring _bers
the matrix is assumed to be square[ Since the _bers are assumed to be one!dimensional\ the matrix
does not have holes where the _bers are located[ Consider a square piece of material loaded in the
same out of plane fashion that a matrix element would be loaded[ The shearing sti}ness "load to
displacement ratio# of this structure is independent of the actual size of the square[ Therefore\ the
spacing between _bers does not enter the formulation of the shear lag model when the matrix is
assumed to have no axial sti}ness[ In reality the matrix does have holes where the _bers are
positioned[ As the spacing between _bers is decreased the e}ects of the holes becomes more
pronounced because the relative size of the holes increases[ To fully investigate the e}ects of
_ber spacing\ and thus volume fraction\ other methods such as three!dimensional _nite element
calculations are required[

The _rst imperfection that was investigated in this work was the case where the broken _ber is
able to debond from the matrix and slide with a constant shear stress acting at the interface[ This
type of behavior is generally desirable because it is a nonlinear process that tends to reduce stress
concentrations in the composite and increases the fracture toughness[ The magnitude of the stress
concentration was shown to depend on t¼9 which is equal to z3 2p:3 z"Ef:Gm#"t¼9:Efo#[ The maximum
stress concentration factor in the nearest neighbor _ber and the length over which the axial stress
is elevated above the far _eld applied stress were plotted against 0−t¼9:t¼max[

Consider a _ber that is broken before any strain is applied to the composite[ As load is _rst
applied to the composite\ the bond between the _ber and matrix will remain intact[ The system is
well bonded and the stress concentration in the neighboring _ber will be 0[970[ The stress con!
centration factor will remain at 0[970 until enough strain is applied to cause the shear stress near
the tip of the broken _ber over a signi_cant area of the interface to reach t9\ the critical shear
sliding stress[ Upon further loading the slip length will increase\ and the stress concentration in
the nearest neighbor _bers will drop according to Fig[ 4[

What does this mean in terms of global or local load sharing< High stress concentrations occur
at low applied strains when _ber failure is least likely to occur\ and low stress concentrations occur
at high applied strains when _ber failure is extensive[ In order to answer this question more detailed
calculations would have to be performed that include the statistics of _ber failure and allow for
multiple breaks to interact[ These types of calculations are beyond the scope of this paper[ A few
qualitative statements can be made about global versus local load sharing[ First\ a low critical
shear sliding stress will cause composite behavior to be closer to the GLS regime[ This is due to
low values of t9 causing relatively long slip lengths[ Second\ a high matrix shear modulus will
induce GLS!type behavior[ The higher the matrix shear modulus\ the closer the normalized shear
sliding strength is to zero\ and the smaller the stress concentrations[ Finally\ composites with
stronger _bers will also approach the GLS regime[ Strong _bers require high strains to cause
failure\ and the normalization of t¼9 implies that high strains reduce the relative shear sliding
resistance\ bring about relatively long slip zones\ and consequently cause stress concentrations to
be low[ Generally\ any characteristics that cause slip zones to be long and stress concentrations
to be low imply a tendency towards global load sharing[

After the e}ects of sliding were investigated\ the assumption that the matrix has no axial sti}ness
was relaxed[ The _nite element method gives a straightforward procedure for adding axial sti}ness
to the matrix in a mechanically consistent manner[ Interpreting the results of the shear lag models
with axial matrix sti}ness is not as simple as the implementation[ In order to keep shear lag models
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as simple and useful as possible\ it is necessary to use a small number of degrees of freedom[ When
this is done\ the exact location of the crack tip at a _ber break becomes blurred[ When there is
zero axial sti}ness in the matrix\ this question is irrelevant because the _bers must carry all of the
applied load anyway[ However\ when the matrix is able to carry load as well\ careful modeling
and some interpretation is needed[

The model we introduced added extra degrees of freedom in the matrix in order to e}ectively
isolate the crack in the _ber[ This model is relevant to systems where the _bers are well bonded to
the matrix\ but the matrix has su.cient toughness such that cracks that initiate in _bers do not
propagate into the matrix[ When this type of behavior occurs\ the stress concentration factor in a
nearest neighbor _ber diminishes as the axial sti}ness of the matrix increases[ Shear lag models
that ignore axial matrix sti}ness simply cannot predict these e}ects[ The axial sti}ness of the
matrix consists of two parts\ the Young|s modulus of the matrix\ Em\ and the area of the matrix\
w1[ The axial sti}ness per unit length of the matrix is then Emw1[ The w1 term can have two di}erent
simple interpretations[ One approach would be to let w be the center to center _ber spacing[ This
is reasonable\ based on the geometry of the system[ The second interpretation would be to let w1

be equal to the actual area between four _bers\ accounting for the holes that the _bers leave in the
matrix[ This is a reasonable assumption because the Young|s modulus of the shear lag composite\
Ec\ would then be given by the rule of mixtures\ Ec � fEf¦"0−f #Em\ where f is the volume fraction
of _bers being modeled[ Again\ this problem with the interpretation does not arise when Em � 9
because the _ber spacing does not enter into the solution[

The _nal {imperfection| that was considered was uneven _ber spacing[ Two special cases of _ber
spacing eccentricity were modeled[ It was shown that a relatively uniform change in local _ber
spacing " _ber volume fraction# causes less severe stress concentrations than when a single _ber is
placed closer to a broken _ber[ The possibility arises that an arrangement of _bers could occur
randomly that is relatively weak\ i[e[ the stress concentrations in the cluster are higher than usual
because of ~uctuations in _ber spacing[ This would be expected to be an initiation site for a _ber
failure[ Whether this failure would grow into the macroscopic defect which fails the composite
would depend on the strengths of the surrounding _bers[

In the past\ the matrix material in three dimensional shear lag models was represented by springs
in an arbitrary fashion[ The models presented in this paper still represent the matrix by springs\
but the sti}nesses of these springs are determined in a mechanically consistent fashion by the _nite
element method[ With the exception of some two!dimensional models\ shear lag modeling has
been limited to the assumptions that _bers are well bonded to the matrix\ the matrix has zero axial
sti}ness and the _bers are arranged in a perfect array[ The utility of these assumptions is that the
model can almost be solved in closed form\ requiring only a numerical integration to obtain the
_nal solution[ The problem with the model is that real composites never satisfy these assumptions[

The _nite element method used here allows for a straightforward approach to model the e}ects
of _ber:matrix interface sliding\ axial matrix sti}ness and uneven _ber spacing[ This paper discusses
each of these e}ects separately\ but the model is not limited to the calculations presented here[
Any combination of the above factors can be included[ This is especially useful for comparison to
experimental measurements where the control of _ber placement is not precise[

The stress concentration factor on a nearest neighbor _ber to a single broken _ber in a perfect
square array\ where the _bers are bonded to the matrix\ and the matrix does not carry any axial
loads is 0[970[ Sliding at the _ber:matrix interface is a nonlinear process similar to plasticity that
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reduces and spreads out the stress concentrations in the neighboring _bers[ If the crack in the
broken _ber does not extend signi_cantly into the surrounding matrix\ the addition of matrix
sti}ness lowers the stress concentrations in neighboring _bers[ When _bers are perturbed from
their regular positions the stress concentration increases as the neighboring _ber moves closer to
the broken _ber[ The quantitative e}ects of these factors on the strength of composites is beyond
the scope of this paper\ but qualitatively\ lower stress concentrations along with smaller lengths
that these stresses act on lead to higher composite strength[
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Appendix A

The sti}nesses of a matrix element with the node numbering shown below are

K00 � K11 � K22 � K33 � K44 � K55 � K66 � K77 �
1
8
GmDx¦

0
8

Em

w1

Dx

K01 � K23 � K45 � K67 � K04 � K15 � K26 � K37 � −
0
07

GmDx¦
0
07

Em

w1

Dx

K02 � K07 � K16 � K13 � K25 � K34 � K46 � K57 � −
0
25

GmDx−
0
07

Em

w1

Dx

K03 � K12 � K47 � K56 �
0
8

GmDx−
0
8

Em

w1

Dx
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K05 � K14 � K27 � K36 � −
0
8

GmDx¦
0
25

Em

w1

Dx

K06 � K17 � K24 � K35 � −
0
07

GmDx−
0
25

Em

w1

Dx
"A0ÐA6#

where Kij is the force on node i when node j is displaced by one unit and all other nodes\ including
node i\ have zero displacement[
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